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Dynamical quantum-cluster approaches, such as different cluster extensions of the dynamical mean-field
theory �cluster DMFT� or the variational cluster approximation �VCA�, combined with efficient cluster solvers,
such as the quantum Monte Carlo �QMC� method, provide controlled approximations of the single-particle
Green’s function for lattice models of strongly correlated electrons. To access the thermodynamics, however, a
thermodynamical potential is needed. We present an efficient numerical algorithm to compute the grand
potential within cluster-embedding approaches that are based on novel continuous-time QMC schemes. It is
shown that the numerically exact cluster grand potential can be obtained from a quantum Wang-Landau
technique to reweight the coefficients in the expansion of the partition function. The lattice contributions to the
grand potential are computed by a proper infinite summation over Matsubara frequencies. A proof of principle
is given by applying the VCA to antiferromagnetic �short-range� order in the two-dimensional Hubbard model
at finite temperatures.
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I. INTRODUCTION

A powerful strategy to tackle strongly correlated fermion
systems is to start from a local perspective, i.e., to treat the
strong local Coulomb interaction exactly for an isolated clus-
ter �or atom� first, and to include the coupling between the
clusters in a subsequent step. Dynamical cluster-embedding
approaches1–6 �for reviews see Refs. 7–10� provide this in a
self-consistent way. The central object is the cluster single-
particle Green’s function G���� or the cluster self-energy
����. These are computed exactly for the isolated cluster in
an external dynamical �i.e., frequency-dependent� Weiss
field. The Weiss field mimics the effect of the cluster sur-
rounding and is calculated self-consistently using the exact
cluster quantities and Dyson’s equation for the lattice prob-
lem in the thermodynamic limit. Thereby, one has access to
the single-particle excitation spectrum, i.e., to the �inverse�
photoemission cross section, as well as to different physical
quantities that can be derived from this.

The thermodynamics of the system, however, is governed
by a thermodynamical potential, such as the grand potential
�, which is related to the cluster Green’s function and self-
energy in a dynamical cluster-embedding approach via

� = �� + Tr ln G − Tr ln G�. �1�

Here �� is the grand potential of the cluster reference system
and G is the approximate Green’s function of the original
lattice model in the thermodynamic limit which is obtained
from the lattice Dyson equation using the cluster self-energy.
The trace refers to both, spatial and temporal lattice degrees
of freedom, i.e., involves sums over lattice sites and Matsub-
ara frequencies.

Since dynamical cluster embedding is a concept that di-
rectly works in the thermodynamic limit, one of the main
intentions is to construct phase diagrams. There are several
well-known situations where the sole knowledge of the
Green’s function is insufficient and a thermodynamcial po-
tential is required.

A prime example is the Mott transition in the paramag-
netic phase of the half-filled Hubbard model.9 Using a
plaquette of four sites, cellular dynamical mean-field theory
�C-DMFT� predicts a finite U range where the metallic and
the Mott-insulating solutions are coexisting.10 While the
boundaries of the coexistence region could be mapped out
precisely by using continuous-time quantum Monte Carlo
�CT-QMC�,11,12 the actual trend of the line of first-order tran-
sitions has not yet been determined. Recent calculations
within the variational cluster approximation �VCA� by using
the Lanczos method indicate that the first-order line does not
end in a second-order critical point at zero temperature.13

Coexistence and competition of phases with different
long-range or short-range order is also characteristic for
transition-metal oxides and cuprate materials, in particular.
Salient features of this physics are captured by C-DMFT and
VCA calculations for the doped single-band Hubbard
model.2,14,15 Phase separation in the doped Mott insulator at
T=0, for example, is another prime example where the
knowledge of a thermodynamical potential is necessarily
required.16,17

Note that for cluster-embedding approaches based on the
self-energy-functional �SFT� theory18,19 an efficient evalua-
tion of the grand potential via Eq. �1� is decisive not only in
the final step but during the actual calculation for exploiting
a variational principle of the form �����=0 to find the
physical self-energy. Again, the computation of ���� essen-
tially follows Eq. �1�. Furthermore, away from the stationary
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point, metastable phases as well as precursors of stable
phases can be made visible by looking at the functional
���� �see Refs. 17, 19, and 20, for example�.

The cluster size that is accessible using full diagonaliza-
tion �ED� or the Lanczos method21 as “cluster solvers” is
strongly limited. Hubbard clusters consisting of more than,
say, 12 sites cannot be treated conveniently in this way for
zero and for finite T.22 Therefore, if moderately large clusters
are needed, finite-temperature QMC approach represents the
method of choice.11,12,23 An important advantage of the sto-
chastic method is that uncorrelated �“bath”� sites, which
make up the dynamic Weiss field in the cluster-embedding
context, can be attached to the cluster of correlated sites
essentially without any extra numerical cost. At the same
time the bath helps to attenuate the QMC sign problem.

As concerns the evaluation of Eq. �1� and thus the acces-
sibility of the system’s thermodynamics, however, ED turns
out to be much more convenient. �� can be obtained from
the cluster many-body eigenenergies. The trace in the third
term on the right-hand side �rhs� can easily be put in a form
which involves the poles and the zeros of the cluster Green’s
function G� only, as has been shown in Ref. 19. The lattice
contribution via the trace in the second term on the rhs can
also be evaluated with this information at hand by means of
the so-called Q-matrix technique.17

On the other hand, using QMC, there are two main ob-
stacles that prevent a straightforward evaluation of Eq. �1�:
�i� as the Monte Carlo technique is designed to provide ex-
pectation values, the cluster grand potential �� cannot be
computed directly at finite T because of the entropy term. An
alternative is to find �� from d��=−S�dT−N�d�+D�dU by
integrating the cluster double occupancies D� over U for
fixed temperature T and chemical potential �. This, however,
requires simulations for a finite U range. �ii� The evaluation
of the traces must be performed differently since QMC does
not provide the poles and weights of the one-particle excita-
tions. Furthermore, the Green’s functions G� and G are avail-
able on the imaginary Matsubara frequencies only. Integra-
tion along the real axis �as used, e.g., in Ref. 20 for VCA
studies� is thus not possible. Instead, a direct numerical sum-
mation over the Matsubara frequencies must be employed,
similar to an integration along the imaginary frequency axis
as described in Ref. 24 for the T=0 limit.

The purpose of the present paper is to demonstrate that
these difficulties can be overcome. We suggest to employ the
CT-QMC �Refs. 11 and 12� combined with a quantum ver-
sion of the Wang-Landau algorithm.25,26 This allows for a
direct numerical estimate of the cluster partition function for
finite temperatures. The sign problem remains unaffected.
We also discuss the evaluation of the traces in Eq. �1� by
summing over Matsubara frequencies. The paper is orga-
nized as follows: in Sec. II we show how to combine the
quantum Wang-Landau algorithm with CT-QMC to deter-
mine the grand potential of an isolated cluster. For accuracy
checks, the results are compared with those from full diago-
nalizations of small clusters. In Sec. III the Matsubara-
frequency summation is discussed emphasizing the analyti-
cal treatment of the high-frequency limit. The application of
the technique to the two-dimensional square Hubbard system
by embedding a 4�4 cluster in an infinite square lattice is

demonstrated in Sec. IV, where various thermodynamical
properties are discussed.

II. QUANTUM WANG-LANDAU APPROACH

Usual Monte Carlo algorithms sample configurations in
the configuration space by an ergodic random walk. In prac-
tice, however, the Monte Carlo walk could be trapped in a
certain part of the configuration space, especially when the
system is close to a discontinuous phase transition. The
Wang-Landau algorithm25,26 has been introduced to over-
come such problems in the classical systems. For quantum
systems, it has been proposed for an efficient sampling in the
context of a stochastic series expansion in the inverse
temperature.27 Basically the same idea can be applied to al-
gorithms with different expansion parameters. Here we will
discuss the application of Wang-Landau algorithm in the
context of the continuous-time quantum Monte Carlo
method11,12,28,29 where the partition function of a fermionic
quantum system is expanded in powers of the interaction �or
hybridization� strength.

To discuss this quantum Wang-Landau approach, we refer
the so-called “weak-coupling” CT-QMC �Ref. 11� as an ex-
ample. We also consider the single-band Hubbard model
which reads

H = − t �
�i,j�,�

�ci�
† cj� + cj�

† ci�� − ��
i

ni + U�
i

ni↑ni↓ �2�

in the usual notation with ci�
† being the creation operator of

an electron at site i and spin projection �= ↑ ,↓, with ni�
=ci�

† ci�, the nearest-neighbor hopping parameter t, the
chemical potential �, and the interaction strength U. As a
nonperturbative and numerically exact method, the CT-QMC
starts from the infinite sum over diagram orders k in the
expansion of the partition function,

Z
Z0

= �
k=0

�

Ukw�k� = 1 + �
k=1

�

Ukw�k� , �3�

where Z0 is the partition function of the noninteracting sys-
tem. The coefficient of the kth order,

w�k� = �
Ck

w�k,Ck� �4�

is given as a sum over vertex configuration Ck �k vertices at
order k� which specifies the positions of the vertices in space
and imaginary time. It includes a k-dimensional 	 integration
over �0,
�. The weights

w�k,Ck� = �− �	/2�kdet M↑
�k��Ck�det M↓

�k��Ck� �5�

are composed of determinants of matrices M�
�k��Ck� which are

constructed from noninteracting Green’s functions that link
the k vertices of a vertex configuration Ck. A finite �	 is used
for a discretization of the 	 integrations but can be made
arbitrarily small. This sum over vertex configurations is high
dimensional for all practical purposes. For details of the CT-
QMC method see Refs. 11 and 28, for example.

A fermion sign problem can be avoided for the model at
half filling using a parameter �,11 in the interaction term,
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HU =
U

2 �
i

��ni↑ − ���ni↓ − 1 + �� + �ni↑ − 1 + ���ni↓ − ���

�6�

and in the one-particle part

H0 = − t �
�i,j�,�

�ci�
† cj� + cj�

† ci�� − �� − U/2��
i

ni − N�� − �2�U .

�7�

Here N is the total number of sites in the system. The non-
interacting partition function can be determined easily by
diagonalizing H0. This yields

Z0 = e
N��−�2�U Tr e−
�q��q�−�+U/2�nq�, �8�

where q is the momentum vector. It can be further written as

Z0 = e
N��−�2�U�
q

�1 + e−
�q−�+U/2��2. �9�

The high-dimensional sum over orders k and vertex con-
figurations Ck is sampled by a Monte Carlo technique.
Thereby, one can deduce the weight function w�k� up to a
constant factor. Note that w�k� is not normalized to unity
�Eq. �3� yields �k=0

� w�k�=ZU=1 /Z0�. A corresponding histo-
gram,

p�k� = Ukw�k� , �10�

generated by CT-QMC for a small �2�2� Hubbard cluster, is
shown in the left part of Fig. 1. Since w�0�= p�0�=1, as is
obvious from Eq. �3�, one can, in principle, determine the
unknown factor from the k=0 term in the histogram and find
the partition function as Z=Z0�1+�k=1

� p�k� / p�0��. However,
this is by no means practicable since usually p�0� is negligi-
bly small compared to p�k� at the average order, for example
�see Fig. 1, left�. Therefore a histogram reweighting tech-
nique is necessary.

As discussed in Ref. 27, the basic idea of Wang-Landau
sampling is to create a histogram p̃�k� which is flat for all
orders k up to a certain cutoff order kc. Thereby, the algo-
rithm generates approximately the same number of configu-
rations Ck both, at low orders and at higher orders �up to kc�.
To achieve this, a Wang-Landau factor g�k� is introduced to
redefine the weights w�k ,Ck�,

w�k,Ck� → w̃�k,Ck� = w�k,Ck�/g�k� . �11�

This also implies the replacement

w�k� → w̃�k� = w�k�/g�k� . �12�

The �e.g., Metropolis� random walk is performed in the usual
way but with respect to the new weights w̃�k ,Ck� and thereby
with new transition probabilities. The Wang-Laudau factor
g�k� is chosen to make the new histogram flat, i.e., p̃�k�
=Ukw̃�k�=const for k�kc. Hence, the partition function is
then given by

Z
Z0

= �
k=0

�

Ukw�k� = �
k=0

�

Ukw̃�k�g�k� . �13�

If the histogram was completely flat to all orders,

Z
Z0

= p̃�0��
k=0

�

g�k� �14�

and with p�0�=1 we would get

Z/Z0 = �
k=0

�

g�k�/g�0� . �15�

Note, however, that in practice the Wang-Landau reweight-
ing is performed up to certain order kc only. Furthermore, in
any practical simulation p̃�k�=const is approximate �but can
be ensured to arbitrary precision, in principle�. Therefore,
Eq. �13� with the actual new weights and the actual Wang-
Landau factor has to be used for concrete calculations. The
cutoff order kc is basically a preselected number representing
up to which order the histogram will be reweighted. Typi-
cally, kc� �k�, where �k� is the average order, has turned out
to be a good choice.

As discussed in Refs. 25 and 27, the Wang-Landau factor
g�k� is continuously modified during a simulation by multi-
plying g�k� with a constant f if a configuration at order k is
visited,

g�k� → g�k� · f , �16�

until the measured histogram p̃�k� is flat. In practice, we set
g�k�=eG�k� and increase G�k� at each visit by F, i.e., G�k�
→G�k�+F. In our implementation of the algorithm, the flat-
ness of p̃�k� is defined by requiring the difference of the
smallest and largest p̃�k� to be within a given small tolerance
��0, i.e.,

p̃min � �1 − ��p̃max. �17�

In the actual simulation, multiple steps of Wang-Landau re-
weighting is recommended. Each time when the above con-
dition is fulfilled, a further decrease in the multiplicative
constant f improves the flatness of the histogram.

The Wang-Landau factor g�k� is positive by construction.
This implies that the new weights w̃�k ,Ck� are positive if and
only if the original weights w�k ,Ck� are positive. Therefore,
the reweighting technique does not introduce a new source
for a sign problem.

Figure 1 �right� shows the reweighted histogram. We can
see that after the Wang-Landau reweighting up to kc=40, the
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FIG. 1. �Color online� Left: Histogram p�k� of the order k in the
weak-coupling expansion. Calculation for a 2�2 Hubbard cluster
at half filling, 
t=5 and U / t=4. Right: Histogram with Wang-
Landau reweighting, p̃�k�, choosing kc=40.
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histogram p̃�k� is sufficiently “flat.” Each time when the cri-
terion Eq. �17� is fulfilled, F has been reduced by a factor 2
and the tolerance decreased by 0.05 to improve the flatness
of the histogram. For the example shown and also for all
calculations below F=0.01 and a tolerance �=0.2 as final
values have turned out to be sufficient. Note that if Z /Z0 is
computed from Eq. �13� it is unnecessary to have a strictly
flat histogram.

In Fig. 2, the grand potential �=−T ln Z is shown for
three different cluster sizes. � is calculated as a function of
the chemical potential at 
t=10 and U / t=4 and compared to
numerically exact results from full diagonalization of the
problem. The agreement with the exact grand potential is
excellent. The standard deviation of the cluster grand poten-
tial is reasonably small in our calculation, which is crucial
since the lattice grand potential consists of the cluster grand
potential �� and of Tr ln G−Tr ln G�. Both contributions are
of the same order of magnitude. Hence an accurate determi-
nation the cluster grand potential is important. Within the
Wang-Landau CT-QMC implementation, we find that the sta-
tistical error of �� is comparable to that of the Tr ln G
−Tr ln G�, and typically three orders of magnitude lower
than its mean value for the calculations presented here.

Besides the possibility to compute the grand potential,
there is another important advantage of the quantum Wang-
Landau method. Suppose that we have the Wang-Landau fac-
tor g�k� from a calculation at interaction strength U0. Then
the full U dependence of the average of an observable can be
determined at once for 0�U�U0 since the U dependence of
the weights is trivially Ukw�k ,Ck�. Since w�k ,Ck� is a func-
tional of the free Green’s function and 
 only, it is U inde-
pendent.

The average of an observable O is

�O� =
�k�Ck

Ukw�k,Ck�O�k,Ck�

�k�Ck
Ukw�k,Ck�

. �18�

Using Eq. �11�, we have

�O� =
�kU

kg�k��Ck
w̃�k,Ck�O�k,Ck�

�kU
kg�k��Ck

w̃�k,Ck�
. �19�

Define an average at a given order k by

O�k� =
�Ck

w̃�k,Ck�O�k,Ck�

�Ck
w̃�k,Ck�

. �20�

This average is carried out by importance sampling of con-
figurations Ck in the Monte Carlo technique. The subsequent
average over different perturbation orders k then reads as

�O� =
�kU

kg�k�O�k�
�kU

kg�k�
. �21�

The U dependence of �O� is now explicit.
The U-dependent average perturbation order �k�, the av-

erage particle numbers, the interacting Green’s function, etc.,
are easily obtained from this equation. Note that since
U /U0�1, only smaller number of diagrams is required in
the construction of the full partition function at U compared
to U0 while g�k� is determined up to the maximum contrib-
uting order at U0.

Figure 3 shows the Wang-Landau factor g�k� at 
t=5 and
U / t=4 on a 2�2 cluster as well as the on-site Green’s func-
tions for U=0.5 to U=4 with steps �U=0.5 as functions of
the Matsubara frequency. The Green’s functions have been
calculated using Eq. �21�. We have checked that these results
agree with those from conventional CT-QMC simulations at
the respective fixed U. The low-frequency behavior is remi-
niscent of the metal-insulator transition in the infinite square
lattice.

III. LATTICE CONTRIBUTION TO THE
GRAND POTENTIAL

Within a cluster-embedding approach, the approximate
grand potential of the lattice-fermion model in the thermo-
dynamical limit with parameters t and U is given via Eq. �1�
by the grand potential �� of a small cluster with parameters
t� and U and a lattice contribution. The latter is obtained
from the approximate single-particle lattice Green’s function,
Gt,U

−1 = i�n+�− t−�t�,U, and the exact cluster Green’s func-
tion, Gt�,U

−1 = i�n+�− t�−�t�,U, as
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FIG. 2. �Color online� The grand potential per site as a function
of the chemical potential � for small Hubbard clusters at 
t=10 and
U / t=4. The CT-QMC results are shown as dots. The statistical error
is smaller than the symbol size. Full ED results are shown as lines
for comparison.

-1

-0.8

-0.6

-0.4

-0.2

0

0 1 2 3 4 5 6 7 8

Im
[G

(iω
n)

]

ωn

0

10

20

30

40

50

0 4 8 12 16 20

g(
k)

k

FIG. 3. �Color online� The on-site Green’s function for a 2�2
cluster at 
t=5. From bottom to top, different lines corresponds to
different interaction strengths varying from U / t=0.5 to U / t=4.0 in
steps of 0.5. The Wang-Landau factor g�k� was determined at U / t
=4, and the Green’s function for other interaction strengths are
calculated from Eq. �21�.

LI et al. PHYSICAL REVIEW B 80, 195118 �2009�

195118-4



Tr ln�Gt,U� − Tr ln�Gt�,U� = 2T�
n,�

ei�n0+ Nc

N
�

k̃

tr ln
Gt,U�k̃,i�n�
Gt�,U�i�n�

= − 2T
Nc

N �
n,�,k̃

ei�n0+
ln det�1 − Vk̃Gt�,U�i�n�� . �22�

Here Tr=2T�k̃�nei�n0+
tr combines the usual trace referring

to the cluster sites, the sum over Matsubara frequencies, and
the sum over wave vectors in the reduced Brillouin zone of
the superlattice of disconnected clusters. The factor 2 ac-
counts for the two spin projections. Furthermore, Vk̃= tk̃− t�
is the hybridization matrix stressing the difference between
the lattice and the cluster system with respect to the one-
particle parameters. Nc and N are the size of the cluster and
of the lattice, respectively.

There are, in principle, two different techniques that can
be employed to evaluate the frequency sum in Eq. �22�: �i�
an analytical evaluation is possible, once the poles and the
weights of the cluster Green’s function are available. This is
the idea of the Q-matrix method19,30 which works well at
zero temperature where only a few number of poles contrib-

ute, and for small clusters where the full eigensystem is
available from exact diagonalization. It is obvious, however,
that the CT-QMC technique is not capable to locate the
poles. �ii� Alternatively, one can evaluate the frequency sum-
mation numerically using the CT-QMC result for Gt�,U�i�n�
on the Matsubara frequencies. This summation can be per-
formed in close analogy to the integration along the imagi-
nary frequency axis described by Sénéchal.24

Below we briefly describe the method that has been used
here. Note that a direct numerical frequency summation, in
Eq. �22�, is not possible since the factor ei�n0+

is crucial for
convergence. One therefore has to treat the high-frequency
part separately and analytically. Introducing a �sufficiently
large� cutoff frequency ��, the infinite Matsubara sum can
be split up in the following way:

Tr ln�Gt,U� − Tr ln�Gt�,U� = − 2T�
k̃

Nc

N �
n=−�

�

ei�n0+
ln

det�1 − Vk̃Gt�,U�i�n��

det�1 − Vk̃/i�n�
− 2T�

k̃

Nc

N �
n=−�

�

ei�n0+
ln det	1 −

Vk̃

i�n

 . �23�

The first term involves a finite Matsubara sum only and can
thus be computed by direct numerical summation with ei�n0+

set to unity. For the second term, the frequency summation
can be done analytically. We find

− 2T�
k̃

Nc

N �
n=−�

�

ei�n0+
ln det	1 −

Vk̃

i�n

 = 2T	Nc ln 2

− �
a,k̃

Nc

N
ln�1 + e−Ṽ

k̃

aa
/T�
 , �24�

where Ṽ
k̃

aa
are the diagonal elements of Vk̃ and a refers to the

sites in the cluster. This yields

� = �� − 2T�
k̃

Nc

N �
n=−�

�

ln
det�1 − Vk̃Gt�,U�i�n��

det�1 − Vk̃/i�n�
+ 2TNc ln 2

− 2T�
a,k̃

Nc

N
ln�1 + e−Ṽ

k̃

aa
/T� �25�

for the lattice grand potential of a cluster-embedding ap-
proach at finite temperatures. Within CT-QMC, the cluster
contribution �� is determined as shown in Sec. II. Note that,
for different cluster-embedding methods, different imple-

mentations of the noninteracting partition function Z0 must
be considered �see Ref. 31�.

The one-particle Green’s function Gt�,U�i�n� is measured
up to the cutoff frequency ��. Clearly, the accuracy of the
frequency summation in the lattice contribution to the grand
potential is sensitive to this cutoff. To check the accuracy, we
consider as a simple test case the half-filled Hubbard model
with a semielliptical free density of states �0�z� of bandwidth
W=4t, and the Hubbard atom �Nc=1� without bath sites as a
reference “cluster.” The cluster Green’s function at half fill-
ing is readily obtained, the corresponding local self-energy is
�t�,U�i�n�=U2 /4i�n. Within the cluster-embedding method,
this approximates the self-energy of the lattice model and
yields the lattice Green’s function, the local elements of
which are thus given in terms of the free density of states
�0�z� as

Gt,U�i�n� = �
−W/2

W/2 �0�z�dz

i�n − z − �t�,U�i�n�
. �26�

The poles of lattice Green’s function are determined by solv-
ing the equation i�n−z−�t�,U�i�n�=0. From these and from
the poles of Gt�,U�i�n� the lattice grand potential can be de-
termined analytically. We find
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� = �� + T ln	1 + cosh� U

2T

 − T� �0�z�dz ln	cosh

z

2T

+ cosh
�z2 + U2

2T

 . �27�

This is easily evaluated numerically to any desired accuracy
by means of the Simpson method. Table I compares the exact
result for the lattice grand potential �per site� with the nu-
merical result obtained by evaluation of Eq. �25� for different
cutoff frequencies. This demonstrates that a moderate cutoff
frequency is sufficient to obtain a reliable result with a rela-
tive error, as compared to the exact result from Eq. �27�, on
the order of 10−3. This improves with increasing cutoff fre-
quency. With decreasing temperature, the required frequency
cutoff becomes larger.

IV. SHORT-RANGE ANTIFERROMAGNETIC ORDER AT
FINITE TEMPERATURES

For an application of CT-QMC combined with the quan-
tum Wang-Landau method we consider the Hubbard model
on the square lattice at half filling and 
t�5 and use a 4
�4 Hubbard cluster for the embedding. This is well beyond
the cluster size that can be accessed �conveniently� by exact
diagonalization or Lanczos within a cluster-embedding ap-
proach and thus sufficient to provide a proof of principle.
Clearly, our method to determine a thermodynamical poten-
tial can easily be extended to study larger clusters and lower
T with more computational effort.

Generally, the additional computational effort necessary
for the reweighting technique is reasonable. First, we note
that the time needed to initially determine the Wang-Landau
factor is usually less than the time spent for the measurement
of observables in our calculations. It is even negligible in
those cases where there is a good initial estimate for the
Wang-Landau factor, as, e.g., from a preceding calculation
with slightly different model parameters. Second, since the
reweighting technique amounts to importance sampling for
any given order k but full sampling over all k up to the cutoff
order, the configuration space is enlarged considerably. How-
ever, the orders to be sampled additionally are computation-
ally inexpensive because they are significantly lower than the
average order. The numerical effort is still dictated by the
average order as in conventional CT-QMC.

To keep things simple we furthermore use clusters with-
out bath sites, i.e., we perform a VCA calculation where a
single variational parameter is considered only. Note that
bath sites could be added without any additional numerical
cost within the weak-coupling CT-QMC. For the particle-
hole symmetric model at half filling, there is no sign prob-
lem.

The strength h of a staggered magnetic Weiss field sug-
gests itself as the most relevant variational parameter. Hence,
we add the term

HWeiss = h�
i

eiQ·ri�ni↑ − ni↓� �28�

to the Hamiltonian of the reference cluster. Here, Q= �� ,��
is the antiferromagnetic �AF� wave vector. To get the optimal
value of the Weiss field h within the framework of the self-
energy-functional approach, we compute the lattice grand
potential � for different h according to the method outlined
in the previous sections and search for stationary points,

��

�h
= 0. �29�

This optimization of the thermodynamical potential can also
be performed in the presence of a finite physical external
staggered field of strength hAF which must not be confused
with the variational parameter h. The AF order parameter,
i.e., the staggered magnetization, is then obtained as

m = lim
hAF→0

��

�hAF
. �30�

Spontaneous symmetry breaking is indicated by a finite m,
or, looking at ��h� for hAF=0, by a finite optimal value for
the variational parameter h.

For our calculations we usually reweighted the histograms
up to the order kc=Nc
U /2. For higher temperatures, it
turned out to be useful to extend kc by 20 more orders for the
reweighting. The Wang-Landau factor g�k� was kept fixed
when the histogram for k�kc became sufficiently flat, as
controlled by Eq. �17�.

Each observable was measured by totally 2.56�108

Monte Carlo steps after a flat histogram has been obtained,
see Eq. �17�. This turned out to be sufficient for controlling
the statistical error. In most of the results shown below, error
bars are smaller than the symbol size. The frequency sum-
mations discussed in Sec. III have been carried out with a
frequency cutoff of �=120 for all temperatures considered
here.

To start with, we discuss results for vanishing Weiss field,
i.e., h=0. Figure 4 shows the internal energy as a function of
temperature for different interaction strengths. The internal
energy is computed as E=Ekin+U�D� from the double occu-
pancy �D� and the kinetic energy Ekin which is obtained from
the lattice Green’s function �i.e., with self-energy replaced by
the cluster self-energy�.7 The agreement of our results at
U / t=4.0 with those of a QMC calculation32 for an isolated
Hubbard cluster of 8�8 sites is excellent in the entire tem-
perature range.

TABLE I. Grand potential per site for the Hubbard model at half
filling with semielliptical free density of states �bandwidth W=4t�
as obtained for a reference cluster with Nc=1. Numerical results
obtained from Eq. �25� for different temperatures and cutoff fre-
quencies are compared to the exact result �Eq. �27��. The relative
differences are given in brackets.


 Exact Numerical: Eq. �25�

1.0 −0.03423

�=10 �=30

−0.03425 �5.8�10-4� −0.03424 �3.0�10-4�

10.0 −0.03099

�=50 �=100

−0.03106 �2.3�10-3� −0.03102 �9.7�10-4�
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While the internal energy �as an expectation value of an
observable� is directly available within usual QMC methods,
a thermodynamical potential is not. The advantage of the
Wang-Landau approach lies in the direct accessibility of the
partition function and thus of the grand potential for any U
�U0—if implemented within the �weak-coupling� CT-QMC
framework.

Figure 5 shows the temperature dependence of the grand
potential � as obtained from Eq. �25� for two different in-
teraction strengths. The cluster grand potential ��=
−T ln Z� with Z� determined by the Wang-Landau approach
is shown in addition. Using the 4�4 cluster, �� already
represents the main contribution to the total grand potential.
As a function of temperature, the lattice contribution
Tr ln G−Tr ln G� resulting from the cluster embedding is
basically constant at high temperatures but is of crucial im-
portance for low T. This has to be expected as spatial corre-
lations grow with decreasing T.

The general trend of ��T� is ruled by general thermody-
namical relations. Its negative slope is given by the entropy
and the second derivative corresponds to the specific heat
divided by T. The linear high-temperature trend reflects the
Hilbert-space dimension 4N of the Hubbard model with N
sites since

lim
T→�

S�T� = ln 4N = 2N ln 2 �31�

for the entropy. At low temperatures, the results might be
indicative of a quadratic behavior around T=0, correspond-
ing to a linear entropy and a linear specific heat, as one
would expect for a Fermi liquid. Note that there is hardly a
change in the temperature trend when varying U. More defi-
nite statements, however, would require calculations at con-
siderably lower T.

Figure 6 shows the entropy calculated from

S =
E − � − �Nn

T
�32�

as a function of temperature for two different interaction
strengths. Here n is the particle number per site. It is obvious
that at low T and for U / t=4 the results for S are less accurate
when compared with those for the grand potential or internal
energy although the statistical error is reasonably small. Via
Eq. �32�, a small T in the denominator enhances the system-
atic error of E and � resulting from the cutoff kc. To get a
more satisfactory result, kc would have be to increased to
include more diagrams in the CT-QMC.

The entropy can be also obtained as S=−�� /�T from the
grand potential. There is no reason why the two ways for
computing S should give the same result within an approxi-
mate theory. Opposed to quantities such as the particle num-
ber or the staggered magnetization �see Ref. 33, for ex-
ample�, there is no internal consistency of a cluster-
embedding approach with respect to the entropy. We have
therefore explicitly checked for differences between both.
Figure 7 shows the temperature dependence of the entropy at
U / t=1 as obtained from Eq. �32� and from Fig. 5 by differ-
entiation, respectively. Finite differences show up at interme-
diate temperatures. To a major extent, these are due to the
error in calculating the temperature derivative from the dis-
crete and small number of � values. This can be seen, e.g., at
temperature T / t=2 in the figure. There is, however, a small
but significant remaining difference between both ways for
computing S. This represents an intrinsic problem of the
theory and actually of any cluster-embedding approach. The
observed inconsistency may serve as a measure for the error
due to the finite cluster size since thermodynamically consis-
tent results for S can be expected strictly in the infinite-
cluster limit only.
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FIG. 4. �Color online� The internal energy per site determined
from a 4�4 embedded cluster at different temperatures. From bot-
tom to top, the interaction strength increases from U / t=1.0 to 4.0.
Statistical error bars are smaller than the symbol size and hardly
visible. Our results are in good agreement with the QMC solution
on an 8�8 cluster obtained in Ref. 32 at U / t=4.0.
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Finally, Fig. 8 demonstrates that our technique can, in
fact, be used for the determination of variational parameters
within the framework of the self-energy-functional theory.
The figure shows the lattice grand potential � as a function
of the strength of the Weiss field h �see Eq. �28�� for different
U and T. Let us concentrate on the results obtained for the
4�4 cluster first. For U / t=1, U / t=2, and 
t=5.0 �panel
�a�� we find a single stationary point at h=0. This is indica-
tive of the paramagnetic phase at high temperatures and
weak interaction. For U / t=4 �panel �a��, the SFT grand po-
tential clearly displays a minimum around h=0.15. This cor-
responds to antiferromagnetic order. Here we also get a non-
zero value for the order parameter from Eq. �30�. Note that
the variation in � with h is small and comparable to the
statistical error. This shows that 
t=5 is close to the Néel
temperature for U / t=4 �and for the given cluster size, see
below�. As the trend of ��h� is symmetric with respect to h,
the point h=0 represents another stationary point corre-
sponding to the paramagnetic phase. The latter is metastable
as ��h=0� is higher than ��h=0.15�.

Figure 8, panel �b� displays results for a higher tempera-
ture �
t=2�. Here we are again left with the paramagnetic
phase for all U / t only. Obviously, the variation in the grand
potential with h is most pronounced for U / t=4 while it be-
comes more and more flat with decreasing interaction
strength. This is due to the fact that the h dependence enters
the self-energy functional via the self-energy only, i.e.,

��h�=����h�� and �����0 in the noninteracting limit. For

t=5 �panel �a��, this is different. Here, the trend of ��h�
first becomes stronger �comparing U / t=1 with U / t=2� as
explained above. For stronger interactions, however, this
mechanism has to compete with the tendency to form a mini-
mum at a finite h. This explains the nonmonotonic trend in U
visible in panel �a�.

Due to the Mermin-Wagner theorem34 there is no long-
range antiferromagnetic order in the two-dimensional Hub-
bard model at finite temperatures. Therefore, in a strict inter-
pretation, the symmetry-broken phase obtained from the
cluster-embedding approach has to be seen as a mean-field
artifact. In the context of the dynamical cluster approxima-
tion, for example, this has been studied extensively in Ref.
35. For our case, a nonzero value of optimal Weiss field
actually indicates that the antiferromagnetic correlation
length � exceeds the linear size of the cluster, i.e., four sites.

This interpretation is corroborated by the comparison of
the results from the 4�4 cluster embedding with the corre-
sponding ones obtained from a 2�2 cluster �see panel �c��.
Here we have also added the results using full ED as a clus-
ter solver for comparison. Antiferromagnetic �short-range�
order at finite temperatures is build up with increasing inter-
action. If, within a cluster mean-field approach, a symmetry-
broken state is obtained once ���Nc, one should therefore
expect a lower critical interaction strength when reducing the
cluster size Nc. This is exactly what is found when compar-
ing the results for Nc=4�4 �panel �a�� with those for Nc
=2�2 �panel �c��. At U / t=4 the optimal value for h for the
2�2 cluster �hopt=0.24� is larger than that for the 4�4 clus-
ter �hopt=0.15�. Furthermore, the difference ��h�−��0�,
which measures the stability of the antiferromagnetic order,
is higher for the 2�2 calculation as compared to the 4�4
one at the same U / t.

V. CONCLUSIONS

Besides the calculation of one-particle excitations, cluster-
embedding approaches are able to provide detailed informa-
tion on the thermodynamical properties of correlated lattice-
fermion models, such as the Hubbard model. When
combined with the quantum Monte Carlo technique as a
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cluster solver, however, cluster-DMFT schemes or the VCA
cannot directly access a thermodynamical potential because
at finite temperatures the entropy term in the free energy, for
example, cannot be obtained by measuring an observable.
On the other hand, a thermodynamical potential is of crucial
importance for the construction of phase diagrams as it de-
cides on the relative stability in situations where there are
different competing phases, e.g., in the high-Tc problem.

For the novel continuous-time QMC schemes, the present
study has demonstrated that there is an elegant way to over-
come this difficulty, namely, by combining the CT-QMC ap-
proach with a quantum Wang-Landau technique. Employing
a proper reweighting of the transition probabilities, it is eas-
ily possible to construct a flat distribution of the perturbation
order k up to an, in principle, arbitrarily high cutoff order.
This allows for a direct calculation of the finite-T partition
function of the cluster. This has been demonstrated here for
the weak-coupling variant of CT-QMC but can be general-
ized to other schemes. Note that modest changes in the QMC
code are required only. Another advantage of the Wang-
Landau technique which is worth mentioning consists in the
fact that the U dependency of observables is obtained in a
single simulation. Since the weight factors are available for
any perturbation order separately, the U dependence of ob-
servables is trivially given within the weak-coupling CT-
QMC. Once the perturbation-order cutoff kc is suitably fixed
for a calculation at interaction strength U0, the same weight
factors determine the entire U dependence of the observables
for U�U0. Note, however, that one cannot make use of this
advantage within �cluster� DMFT since the effective cluster
problem is itself U dependent.

The lattice contribution to the total grand potential is ob-
tained from the cluster Green’s function and the lattice
Dyson equation by a proper summation over Matsubara fre-
quencies in the Tr ln G-like terms. To obtain convergent re-
sults, the high-frequency asymptotics must be controlled
carefully.

Compared to full diagonalization of the cluster problem or
to Lanczos-type approaches, the CT-QMC Wang-Landau
method can be used for larger clusters with moderate com-
putational effort. For a proof of principle, we have applied
the VCA to the Hubbard model on a square lattice at half
filling and considered a single variational parameter only. A
cluster with 4�4 sites has been used for the embedding.
This is clearly beyond the range that has been accessible in
former VCA studies �at T=0� which were based on the Lanc-
zos method and thereby restricted to clusters with about 12
sites at most.

It is important to note, however, that one of the advan-
tages of the QMC technique is that uncorrelated bath sites
can be integrated out and can thus be included in the cluster
reference system without any extra numerical cost. The cal-
culations presented here have been done without bath sites.
While this is sufficient to discuss the methodical aspects of
the CT-QMC Wang-Landau approach, future studies should
be carried out by including a continuous bath, i.e., the VCA
should be replaced by cellular DMFT �or a different cluster-
DMFT variant� for finite-T calculations based on QMC. This
ensures an optimal description of the local quantum fluctua-
tions on the cluster without extra cost. The implementation
of the quantum Wang-Landau technique as well as the com-
putation of the lattice contribution is identical to the VCA-
based study shown here.
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